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Introduction
There has been a dramatic rise machine learning 
(ML) subgrid-scale parameterizations which aim 
for faster prediction and/or higher accuracy. We 
aim to quantify the uncertainties associated with 
an ML-based parameterization for gravity waves.
 

Gravity waves
Atmospheric gravity waves (GWs) drive middle 
atmosphere circulation as they transport 
momentum vertically away from their sources 
(e.g., convection, frontogenesis and orography). 
GW lengthscales range from tens to thousands of 
km, but typical climate model resolutions are 
around 100 km, meaning a large portion GWs are 
not resolved explicitly. Instead, subgrid-scale GW 
drag must be captured via parameterizations.

GW parameterization (AD99)
We use the convective GW parameterization to 
estimate gravity wave drag (GWD) based on 
Alexander and Dunkerton, 1999 (AD99):

We use AD99 coupled to an intermediate 
complexity climate model, MiMA, to train a neural 
network following Espinosa et al., 2022.

A neural network emulator of AD99
Espinosa et al. (2022) train a neural network (NN) that emulates GWD 
from AD99, using data from climate model, MiMA. 

Estimating Parametric Uncertainties

Uncertainties in the QBO
GWs drive stratospheric phenomena such as the 
Quasi-Biennial Oscillation (QBO), the downwards 
propagating zonal winds in the equatorial 
stratosphere. Parameterizations are required for a 
spontaneous QBO in climate models. Fig. 5 shows 
the QBO in MiMA when coupled to (a) AD99 and 
(b-d) three of the NNs. 

Fig. 6 shows the increased variability in QBO 
periods at 10 hPa for NNs compared to AD99.

Conclusions
Replacing an existing gravity wave parameterization 
with a machine learning alternative increases the 
uncertainty in QBO period. Next, we should 
consider the breakdown of uncertainty by source: 
structural uncertainty, training data uncertainty, 
generalization uncertainty. This also provides a  
basis for online training/calibration of NNs.

(1) Fixed source of 
convection triggers 
spectrum of GWs

(2) GWs propagate upwards, 
growing in amplitude

(3) GWs reach critical level 
(dependent on wind speeds) 
and break, depositing GWD 
on mean flow
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Offline Uncertainties

Fig. 3 shows the NN ensemble mean (red) 
and standard deviation (orange shading) 
compared against the ground truth (black) 
at a single gridpoint and timestep. We call 
these offline uncertainties, i.e., not 
coupled to the climate model.
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Increased online uncertainties

We estimate online uncertainties 
(uncertainty in GWD within the climate 
model) by running an ensemble of MiMA 
simulations, each coupled to a separately 
trained NN described above. Comparing 
distributions of gravity wave drag, we find 
greater uncertainties increase due to error 
propagation and diverging simulations, 
which leads to filtering of winds.

Refs.: Alexander and Dunkerton (1999), JAS, 56, 24 pp. 4167-4182; Espinosa et al. (2022) GRL, 49, 8, e2022GL098174. Contact me: lauraman@stanford.edu

Fig.	1:	AD99	schematic

Fig.	2:	NN	emulator	of	AD99

Fig.	3:	Profiles	of	AD99	vs.	NN	
GWD	offline	

Fig.	4:	Distributions	of	gravity	wave	
drag	in	tropics	at	10	hPa

Fig.	5:	QBO	in	MiMA	with	(a)	AD99	and	(b-d)	example	NNs

Fig.	6:	QBO	period	at	10	hPa	in	MiMA	for	AD99	and	NNs
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Train 50-member ensemble of NNs, each with the same architecture 
but different random initialization à distribution of parameters.
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